def individual(length, min, max):
#'Create a member of the population.'
return [ randint(min,max) for x in xrange(length) ]
def population(count, length, min, max):
return [ individual(length, min, max) for x in xrange(count) ]
def fitness(individual, target):
sum = reduce(add, individual, 0)
return abs(target-sum)
def grade(pop, target):
summed = reduce(add, (fitness(x, target) for x in pop), 0)
return summed / (len(pop) * 1.0)
def evolve(pop, target, retain=0.2, random_select=0.05, mutate=0.01):
graded = [ (fitness(x, target), x) for x in pop]
graded = [ x[1] for x in sorted(graded)]
retain_length = int(len(graded)*retain)
parents = graded[:retain_length]
# randomly add other individuals to promote genetic diversity
for individual in graded[retain_length:]:
if random_select > random():
parents.append(individual)
# mutate some individuals
for individual in parents:
if mutate > random():
pos_to_mutate = randint(0, len(individual)-1)
# this mutation is not ideal, because it
# restricts the range of possible values,
# but the function is unaware of the min/max
# values used to create the individuals,
individual[pos_to_mutate] = randint(
min(individual), max(individual))
# crossover parents to create children
parents_length = len(parents)
desired_length = len(pop) - parents_length
children = []
while len(children) < desired_length:
male = randint(0, parents_length-1)
female = randint(0, parents_length-1)
if male != female:
male = parents[male]
female = parents[female]
half = len(male) / 2
child = male[:half] + female[half:]
children.append(child)
parents.extend(children)
return parents
iTarget = 76
p = population(20,6,0,40)
fitness_history = [grade(p, iTarget),]
arBestP = []
iTryGA = 1000 #try thousand times
iMxScore = iTarget
iLoopCnt = iTryGA
for i in xrange(iTryGA):
p = evolve(p, iTarget)
iScore = grade(p, iTarget)
fitness_history.append(iScore)
if iScore < iMxScore:
iMxScore = iScore
arBestP = deepcopy(p)
if iScore == 0:
iLoopCnt = i
break;
print "mx score = %s loop count = %s" % (iMxScore,iLoopCnt)
print "Target:%s Best GA Pick:%s = %s" % (iTarget, arBestP[0],reduce(add, arBestP[0], 0))
#for datum in fitness_history:
# print datum