How to test markdown text using HTML and JavaScript

c-sharpcorner.com

Table of Contents


Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Heading 1 link Heading link

Heading (underline)

This is an H1

This is an H2

The HTML specification is maintained by the W3C.

ajshdkhask
jahsdk asd

First Header Second Header
Content Cell Content Cell
Content Cell Content Cell
  1. function test() {
  2. console.log("Hello world!");
  3. }
  4. (function(){
  5. var box = function() {
  6. return box.fn.init();
  7. };
  8. box.prototype = box.fn = {
  9. init : function(){
  10. console.log('box.init()');
  11. return this;
  12. },
  13. add : function(str) {
  14. alert("add", str);
  15. return this;
  16. },
  17. remove : function(str) {
  18. alert("remove", str);
  19. return this;
  20. }
  21. };
  22. box.fn.init.prototype = box.fn;
  23. window.box =box;
  24. })();
  25. var testBox = box();
  26. testBox.add("jQuery").remove("jQuery");
  1. <!DOCTYPE html>
  2. <html>
  3. <head>
  4. <mate charest="utf-8" />
  5. <meta name="keywords" content="Editor.md, Markdown, Editor" />
  6. <title>Hello world!</title>
  7. <style type="text/css">
  8. body{font-size:14px;color:#444;font-family: "Microsoft Yahei", Tahoma, "Hiragino Sans GB", Arial;background:#fff;}
  9. ul{list-style: none;}
  10. img{border:none;vertical-align: middle;}
  11. </style>
  12. </head>
  13. <body>
  14. <h1 class="text-xxl">Hello world!</h1>
  15. <p class="text-green">Plain text</p>
  16. </body>
  17. </html>

Images

Image:

Follow your heart.

  • kajdlsakjdl
  • kajdlsakjdl
  • kajdlsakjdl
  • kajdlsakjdl
  • asdjaskd
  • asdjaskd
  • asdjaskd
  • asdjaskd
  • akjhsdksahjkd
  • aksdlaksjdl
    • ajsdhkajshdk
    • ajhsdkahjsdk
      • kjashdkjahskd
      • aashdgadshk
  • GFM task list 1
  • GFM task list 2
  • GFM task list 3
    • GFM task list 3-1
    • GFM task list 3-2
    • GFM task list 3-3
  • GFM task list 4
    • GFM task list 4-1
    • GFM task list 4-2

Escape

*literal asterisks*

TeX(KaTeX)

x>yx > y

(3x1+(1+x)2)(\sqrt{3x-1}+(1+x)^2)

(3x1+(1+x)2)(\sqrt{3x-1}+(1+x)^2)

sin(α)θ=i=0n(xi+cos(f))\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))

(_k=1na_kb_k)2(_k=1na_k2)(_k=1nb_k2)\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right)

1(ϕ5ϕ)e25π=1+e2π1+e4π1+e6π1+e8π1+\displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{ \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }

f(x)=f^(ξ)e2πiξxdξf(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi

Page break

Print Test: Ctrl + P

Flowchart

Created with Raphaël 2.1.2startsomethingsomething Yes or No?endyesno

Sequence Diagram

Created with Raphaël 2.1.2AndrewAndrewChinaChinaSays HelloChina thinksabout itHow are you?I am good thanks!